1. Line regression 1.1 Ordinary Least Squares (OLS) Perspective 1.1.1 Model Representation: The linear regression model is represented as: \hat{Y} = X
github: https://github.com/pandalabme/d2l/tree/main/exercises import sys import torch.nn as nn import torch import warnings sys.path.append('/home/jov
github: https://github.com/pandalabme/d2l/tree/main/exercises 1. Increase the number of stages to four. Can you design a deeper RegNetX that performs
github: https://github.com/pandalabme/d2l/tree/main/exercises import torch import torch.nn as nn from torch.nn import functional as F import sys sys.p
github: https://github.com/pandalabme/d2l/tree/main/exercises 1. What are the major differences between the Inception block in Fig. 8.4.1 and the resi
github: https://github.com/pandalabme/d2l/tree/main/exercises 1. Should we remove the bias parameter from the fully connected layer or the convolution
github: https://github.com/pandalabme/d2l/tree/main/exercises import sys import torch.nn as nn import torch import warnings sys.path.append('/home/jov
github: https://github.com/pandalabme/d2l/tree/main/exercises import sys import torch.nn as nn import torch import warnings sys.path.append('/home/jov
github: https://github.com/pandalabme/d2l/tree/main/exercises import sys import torch.nn as nn import torch import warnings sys.path.append('/home/jov
github: https://github.com/pandalabme/d2l/tree/main/exercises import sys import torch.nn as nn import torch import warnings sys.path.append('/home/jov
github: https://github.com/pandalabme/d2l/tree/main/exercises import sys import torch.nn as nn import torch import warnings sys.path.append('/home/jov