15.3. The Dataset for Pretraining Word Embeddings

narcissuskid
发布于 2023-09-27 / 109 阅读 / 0 评论 / 0 点赞

15.3. The Dataset for Pretraining Word Embeddings

github:
https://github.com/pandalabme/d2l/tree/main/exercises

1. How does the running time of code in this section changes if not using subsampling?

import time
import collections
import math
import os
import random
import torch
import warnings
import sys
import pandas as pd
sys.path.append('/home/jovyan/work/d2l_solutions/notebooks/exercises/d2l_utils/')
import d2l
from torchsummary import summary
warnings.filterwarnings("ignore")

#@save
d2l.DATA_HUB['ptb'] = (d2l.DATA_URL + 'ptb.zip',
                       '319d85e578af0cdc590547f26231e4e31cdf1e42')
#@save
class RandomGenerator:
    """Randomly draw among {1, ..., n} according to n sampling weights."""
    def __init__(self, sampling_weights,k=10000):
        # Exclude
        self.population = list(range(1, len(sampling_weights) + 1))
        self.sampling_weights = sampling_weights
        self.candidates = []
        self.i = 0
        self.k = k

    def draw(self):
        if self.i == len(self.candidates):
            # Cache `k` random sampling results
            self.candidates = random.choices(
                self.population, self.sampling_weights, k=self.k)
            self.i = 0
        self.i += 1
        return self.candidates[self.i - 1]
    
#@save
def subsample(sentences, vocab,flag=True):
    """Subsample high-frequency words."""
    # Exclude unknown tokens ('<unk>')
    sentences = [[token for token in line if vocab[token] != vocab.unk]
                 for line in sentences]
    counter = collections.Counter([
        token for line in sentences for token in line])
    num_tokens = sum(counter.values())

    # Return True if `token` is kept during subsampling
    def keep(token):
        return(random.uniform(0, 1) <
               math.sqrt(1e-4 / counter[token] * num_tokens))
    if flag:
        return ([[token for token in line if keep(token)] for line in sentences],
            counter)
    return (sentences,counter)

#@save
def get_centers_and_contexts(corpus, max_window_size):
    """Return center words and context words in skip-gram."""
    centers, contexts = [], []
    for line in corpus:
        # To form a "center word--context word" pair, each sentence needs to
        # have at least 2 words
        if len(line) < 2:
            continue
        centers += line
        for i in range(len(line)):  # Context window centered at `i`
            window_size = random.randint(1, max_window_size)
            indices = list(range(max(0, i - window_size),
                                 min(len(line), i + 1 + window_size)))
            # Exclude the center word from the context words
            indices.remove(i)
            contexts.append([line[idx] for idx in indices])
    return centers, contexts

#@save
def read_ptb():
    """Load the PTB dataset into a list of text lines."""
    data_dir = d2l.download_extract('ptb')
    # Read the training set
    with open(os.path.join(data_dir, 'ptb.train.txt')) as f:
        raw_text = f.read()
    return [line.split() for line in raw_text.split('\n')]

#@save
def get_negatives(all_contexts, vocab, counter, K, k=10000):
    """Return noise words in negative sampling."""
    # Sampling weights for words with indices 1, 2, ... (index 0 is the
    # excluded unknown token) in the vocabulary
    sampling_weights = [counter[vocab.to_tokens(i)]**0.75
                        for i in range(1, len(vocab))]
    all_negatives, generator = [], RandomGenerator(sampling_weights,k)
    for contexts in all_contexts:
        negatives = []
        while len(negatives) < len(contexts) * K:
            neg = generator.draw()
            # Noise words cannot be context words
            if neg not in contexts:
                negatives.append(neg)
        all_negatives.append(negatives)
    return all_negatives

#@save
def batchify(data):
    """Return a minibatch of examples for skip-gram with negative sampling."""
    max_len = max(len(c) + len(n) for _, c, n in data)
    centers, contexts_negatives, masks, labels = [], [], [], []
    for center, context, negative in data:
        cur_len = len(context) + len(negative)
        centers += [center]
        contexts_negatives += [context + negative + [0] * (max_len - cur_len)]
        masks += [[1] * cur_len + [0] * (max_len - cur_len)]
        labels += [[1] * len(context) + [0] * (max_len - len(context))]
    return (torch.tensor(centers).reshape((-1, 1)), torch.tensor(
        contexts_negatives), torch.tensor(masks), torch.tensor(labels))

#@save
def load_data_ptb(batch_size, max_window_size, num_noise_words, flag=True, k=10000):
    """Download the PTB dataset and then load it into memory."""
    # num_workers = d2l.get_dataloader_workers()
    sentences = read_ptb()
    vocab = d2l.Vocab(sentences, min_freq=10)
    subsampled, counter = subsample(sentences, vocab,flag)
    corpus = [vocab[line] for line in subsampled]
    all_centers, all_contexts = get_centers_and_contexts(
        corpus, max_window_size)
    all_negatives = get_negatives(
        all_contexts, vocab, counter, num_noise_words, k=k)

    class PTBDataset(torch.utils.data.Dataset):
        def __init__(self, centers, contexts, negatives):
            assert len(centers) == len(contexts) == len(negatives)
            self.centers = centers
            self.contexts = contexts
            self.negatives = negatives

        def __getitem__(self, index):
            return (self.centers[index], self.contexts[index],
                    self.negatives[index])

        def __len__(self):
            return len(self.centers)

    dataset = PTBDataset(all_centers, all_contexts, all_negatives)

    data_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True,
                                      collate_fn=batchify)
    return data_iter, vocab
t0 = time.time()
data_iter, vocab = load_data_ptb(512, 5, 5)
t1 = time.time()
t1-t0
# names = ['centers', 'contexts_negatives', 'masks', 'labels']
# for batch in data_iter:
#     for name, data in zip(names, batch):
#         print(name, 'shape:', data.shape)
#     break
9.802619218826294
t0 = time.time()
data_iter, vocab = load_data_ptb(512, 5, 5,flag=False)
t1 = time.time()
t1-t0
23.945112943649292

2. The RandomGenerator class caches k random sampling results. Set k to other values and see how it affects the data loading speed.

ts = []
k_list = [10,100,1000,10000,100000]
for k in k_list:
    t0 = time.time()
    data_iter, vocab = load_data_ptb(512, 5, 5, k)
    t1 = time.time()
    ts.append(t1-t0)
df = pd.DataFrame({'k':k_list,'time':ts})
df
k time
0 10 10.338631
1 100 9.933641
2 1000 9.871675
3 10000 10.212862
4 100000 10.313871

3. What other hyperparameters in the code of this section may affect the data loading speed?

ts = []
noise_list = [2,5,10,15,20,25,30]
for num_noise_words in noise_list:
    t0 = time.time()
    data_iter, vocab = load_data_ptb(512, 5, num_noise_words)
    t1 = time.time()
    ts.append(t1-t0)
df = pd.DataFrame({'num_noise_words':noise_list,'time':ts})
df
num_noise_words time
0 2 6.078225
1 5 9.767658
2 10 16.298754
3 15 22.715422
4 20 28.570359
5 25 35.331429
6 30 41.231029
ts = []
window_list = [2,5,10,15,20,25,30]
for max_window_size in window_list:
    t0 = time.time()
    data_iter, vocab = load_data_ptb(512, max_window_size, 5)
    t1 = time.time()
    ts.append(t1-t0)
df = pd.DataFrame({'max_window_size':max_window_size,'time':ts})
df
max_window_size time
0 30 7.211373
1 30 10.097298
2 30 12.955909
3 30 15.322590
4 30 15.998776
5 30 16.585841
6 30 16.927828

Reference

  1. https://d2l.ai/chapter_natural-language-processing-pretraining/word-embedding-dataset.html

评论