10.2. Gated Recurrent Units (GRU)

narcissuskid
发布于 2023-09-05 / 141 阅读 / 0 评论 / 0 点赞

10.2. Gated Recurrent Units (GRU)

github:
https://github.com/pandalabme/d2l/tree/main/exercises

1. Assume that we only want to use the input at time step t' to predict the output at time step t\gt t'. What are the best values for the reset and update gates for each time step?

If we only want to use the input at time step t' to predict the output at time step t\gt t', then we want to preserve the hidden state h_{t'} as much as possible and ignore the inputs at other time steps. Therefore, the best values for the reset and update gates are:

  • For k \lt t', we set z_k=0 and r_k=0. This means that we do not update the hidden state at all and we do not use the previous hidden state to compute the candidate hidden state. The hidden state remains as the initial value h_0 until time step t'.
  • For k = t', we set z_{t'}=0 and r_{t'}=1. This means that we do not update the hidden state with the candidate hidden state, but we use the previous hidden state h_0 to compute the candidate hidden state. The candidate hidden state becomes a function of the input at time step t' and the initial value h_0. The hidden state remains as h_{t'}=\frac{M^{t'}x_0}{\|M^{t'}x_0\|}.
  • For k \gt t', we set z_k=1 and r_k=0. This means that we update the hidden state with the candidate hidden state, but we do not use the previous hidden state to compute the candidate hidden state. The candidate hidden state becomes a function of only the input at each time step. The hidden state becomes a weighted average of the candidate hidden state and the hidden state at time step t'. The hidden state remains close to h_{t'} as long as the inputs are not too large.

This way, we can ensure that the hidden state at time step t is mostly influenced by the input at time step t' and not by other inputs.

2. Adjust the hyperparameters and analyze their influence on running time, perplexity, and the output sequence.

import sys
import torch.nn as nn
import torch
import warnings
sys.path.append('/home/jovyan/work/d2l_solutions/notebooks/exercises/d2l_utils/')
import d2l
from torchsummary import summary
warnings.filterwarnings("ignore")
from sklearn.model_selection import ParameterGrid

class GRU(d2l.RNN):
    def __init__(self, num_inputs, num_hiddens):
        d2l.Module.__init__(self)
        self.save_hyperparameters()
        self.rnn = nn.GRU(num_inputs, num_hiddens)
        
def stat_val(model, data):
    ppls = []
    for batch in iter(data.get_dataloader(False)):
        ppls.append(model.validation_step(batch, plot_flag=False).detach().numpy())
    return np.exp(np.mean(ppls))

def experient(data_class=d2l.TimeMachine, num_steps=32, num_hiddens=32, lr=1):
    data = data_class(batch_size=1024, num_steps=num_steps)
    gru = GRU(num_inputs=len(data.vocab), num_hiddens=num_hiddens)
    model = d2l.RNNLM(gru, vocab_size=len(data.vocab), lr=lr)
    trainer = d2l.Trainer(max_epochs=100, gradient_clip_val=1) #, num_gpus=1
    trainer.fit(model, data)
    return stat_val(model, data)
param_grid = {'num_steps':[8, 16, 32, 64, 128],
              'num_hiddens':[8, 16, 32, 64, 128],
              'lr':[0.01,0.1,1,10]}
param_grid_obj = ParameterGrid(param_grid)
ppls = []
for params in param_grid_obj:
    ppl = experient(**params)
    ppls.append(ppl)
    print(params, ppl)

svg

3. Compare runtime, perplexity, and the output strings for rnn.RNN and rnn.GRU implementations with each other.

4. What happens if you implement only parts of a GRU, e.g., with only a reset gate or only an update gate?

class ResetGRUScratch(d2l.Module):
    def __init__(self, num_inputs, num_hiddens, sigma=0.01):
        super().__init__()
        self.save_hyperparameters()

        init_weight = lambda *shape: nn.Parameter(torch.randn(*shape) * sigma)
        triple = lambda: (init_weight(num_inputs, num_hiddens),
                          init_weight(num_hiddens, num_hiddens),
                          nn.Parameter(torch.zeros(num_hiddens)))
        # self.W_xz, self.W_hz, self.b_z = triple()  # Update gate
        self.W_xr, self.W_hr, self.b_r = triple()  # Reset gate
        self.W_xh, self.W_hh, self.b_h = triple()  # Candidate hidden state
        
    def forward(self, inputs, H=None):
        if H is None:
            # Initial state with shape: (batch_size, num_hiddens)
            H = torch.zeros((inputs.shape[1], self.num_hiddens),
                          device=inputs.device)
        outputs = []
        for X in inputs:
            # Z = torch.sigmoid(torch.matmul(X, self.W_xz) +
            #                 torch.matmul(H, self.W_hz) + self.b_z)
            R = torch.sigmoid(torch.matmul(X, self.W_xr) +
                            torch.matmul(H, self.W_hr) + self.b_r)
            H_tilde = torch.tanh(torch.matmul(X, self.W_xh) +
                               torch.matmul(R * H, self.W_hh) + self.b_h)
            H = Z * H + (1 - Z) * H_tilde
            H = H_tilde
            outputs.append(H)
        return outputs, H
    
class UpdateGRUScratch(d2l.Module):
    def __init__(self, num_inputs, num_hiddens, sigma=0.01):
        super().__init__()
        self.save_hyperparameters()

        init_weight = lambda *shape: nn.Parameter(torch.randn(*shape) * sigma)
        triple = lambda: (init_weight(num_inputs, num_hiddens),
                          init_weight(num_hiddens, num_hiddens),
                          nn.Parameter(torch.zeros(num_hiddens)))
        self.W_xz, self.W_hz, self.b_z = triple()  # Update gate
        # self.W_xr, self.W_hr, self.b_r = triple()  # Reset gate
        self.W_xh, self.W_hh, self.b_h = triple()  # Candidate hidden state
        
    def forward(self, inputs, H=None):
        if H is None:
            # Initial state with shape: (batch_size, num_hiddens)
            H = torch.zeros((inputs.shape[1], self.num_hiddens),
                          device=inputs.device)
        outputs = []
        for X in inputs:
            Z = torch.sigmoid(torch.matmul(X, self.W_xz) +
                            torch.matmul(H, self.W_hz) + self.b_z)
            # R = torch.sigmoid(torch.matmul(X, self.W_xr) +
                            # torch.matmul(H, self.W_hr) + self.b_r)
            H_tilde = torch.tanh(torch.matmul(X, self.W_xh) +
                               torch.matmul(H, self.W_hh) + self.b_h)
            H = Z * H + (1 - Z) * H_tilde
            H = H_tilde
            outputs.append(H)
        return outputs, H
data = d2l.TimeMachine(batch_size=1024, num_steps=32)
gru = GRUScratch(num_inputs=len(data.vocab), num_hiddens=32)
model = d2l.RNNLMScratch(gru, vocab_size=len(data.vocab), lr=4)
trainer = d2l.Trainer(max_epochs=50, gradient_clip_val=1, num_gpus=1)
trainer.fit(model, data)

Reference

  1. https://d2l.ai/chapter_recurrent-modern/gru.htm

评论